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A new computational model for space representation, called the isovist, is defined.
Given a point z in a space P, the isovist at z, V., is the subset of P visible from z. Pro-
cedures for computing V., for polygonal spaces are presented. Next, isovist fields are de-
fined by associating a scalar measure of V. at each point z in P. The architectural and
computational significance of these fields is discussed. Finally, an analysis of computing
small, sufficient sets of points is given. A set, of points is sufficient if the union of the
isovists of the points in the set is the entire space P. Sufficient sets are related to the
endpoints of branches of the skeleton in the case of polygonal spaces.

1. INTRODUCTION

A central problem in image pattern recognition is the representation and
analysis of form or shape. A significant amount of research has been devoted to
developing shape representations for the purpose of recognition—e.g., Fourier
models [1, 2], moment models [3], piecewise approximation [4-67]; see [7] for a
more comprehensive review. Less effort has been devoted to developing models
for describing the distribution of space within a (not necessarily simple) shape.
We shall call the latter representations space representations to distinguish them
from other shape representations. Some examples of space representations include
work on the decomposition of shapes into primary convex subsets [8] and into
symmetric pieces [9].

In this paper we describe a new computational model for space representation
called the isovist field. The notion of the isovist was first introduced by Benedikt
[10] as a tool for modeling human space perception in the context of architectural
design. We will discuss why the isovist is also a useful tool for computer space
perception.

We will restrict our attention to two-dimensional polygonal spaces. The ideas
presented can be generalized to nonpolygonal spaces, as well as to three dimen-
sions. In fact, isovists and isovist fields were motivated in part by Gibson’s theory
of ecological optics [11], which has itself recently received renewed interest as a
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computational model for vision (see, e.g., Clocksin [12]). In this paper, then,
we will be exploring the application of a theory originally designed to account for
global aspects of human depth perception mainly to the analysis of two-dimen-
sional shapes. A short discussion of isovists and space perception in relation to
architecture is given in Section 3.4.

Let P be a connected subset of the plane. For computational reasons, we will
later restrict P to be a polygonal region, possibly with polygonal holes. Let = be
a point in P. Then the isovist at point z of P, denoted V, p, or V, if P is under-
stood, is defined as

Ver=lylyE Pand xy N\ P = xy}.

That is, the isovist of point x consists of all points y in P that are visible from z.

The notion of an isovist is clearly related to the symmetric axis, or skeleton
[13, 14]. The formal distinction is that while the symmetric axis is based on
largest circular regions centered at each point and wholly contained in P, the
isovist is based on largest star-shaped regions visible from each point that are
wholly contained in P. Clearly, the largest circular region of a point is contained
in the isovist for that point. The motivational distinction is that the symmetric
axis was proposed as a model to help account for biological form and growth,
while the isovist was proposed as an explanatory (and a potential computational)
model of space perception.

As a simple example of an isovist, consider the polygon P and point z in Fig. 1.
V. is denoted by the hatched area. Note that V', is a polygon, and that the bound-
ary of V, can be partitioned into two parts:

(1) the boundary common with the boundary of P (or boundaries of holes
in P)

(2) the boundary common with the interior of P. This is called the occluded
boundary of V.

Figure 2 is an example of a nonsimple P and V, for a point z in P. Given a
shape, P, and the isovists at all points z in P, we can compute an isovist field by
assigning to each x in P the value of some feature (such as area) of V. Figure 3b
contains the area field for the shape P in Fig. 3a.

Isovist fields ean be used to construct models for human behavior

c.g., one
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Fia. 1. Polygon P and V..
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Fig. 2. V, for nonsimple P.

can test the hypothesis that if a person were asked to hide in a room he would
always seek the minimum of the area field. Isovists and isovist fields can also
be used as computational tools for robot plan formation—e.g., compute the
shortest traversable path from point a to point b which enables a robot guard
to see all points in the room (the shortest path may not be traversable if it
involves moving through a narrow gap between two holes). We will examine
isovist feature measures and fields later in this paper.

An important notion associated with the isovist is that of a minimal path or
minimal set. We say that the set of points X = {zy, s, ..., 2.} In P is sufficient
if P = \U,exV.. A set X is minimal if X is sufficient, and for all sets ¥ of points,
Y sufficient implies |X| < |¥]|. If we regard X as a sequence, then we can say
that X is an epath if d(@;, z.1) < ¢ 1 <17 <7 — 1, where d is some distance
measure. If isovists are only computed at a discrete set of grid points in P, and
if dis the chessboard distance, then a 1-path is simply an 8-connected path
(Rosenfeld and Kak [157]). An ordered set X is a minimal e-path if

(a) X is an epath, and
(b) X is minimal.

Minimal e-paths and minimal sets are of specific interest in both robot planning
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Fi6. 3. A U-shape {(a) and its area field (b) represented using overstriking. Dark points indicate
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and psychological modeling. We might like a robot guard to follow a minimal
e-path (e would correspond to the distance the robot would travel before using
its vision capabilities to scan the room). Or, if we had to position cameras for the
surveillance of a room, we would prefer to put them at points in a minimal set,
As a psychological model we might ask if human guards follow minimal e-paths.

An important computational question is how one computes minimal sets and
minimal e-paths (or approximations to such sets and paths). We will consider
that computation of small sufficient sets in Section 4. We will first discuss the
computational considerations involved in forming isovist fields in Sections 2 and 3.

2. COMPUTING THE ISOVIST

In this section we will describe algorithms for computing V', » We will assume
that P is a polygon, although the algorithm ean be extended to shapes deseribed
by higher-order curves.

We will first assume that P is simply connected; once we can compute V, ,
for such P we will describe the extension to multiply connected P’s.

Let P be represented by the sequence of vertices { (i, ¥i) }7=o. The ith side of
the polygon is the line from (z;, y:) to (Ziy1, Yirr), subseript addition modulo .

We say that v; = (24, y,) is visible from z if the line from x to v;, xv,, lies entirely
within P. Given a suitable representation for P (see Shamos [167) the question
of whether xv; intersects a side of P (other than one emanating from v;) can be
answered in O(log (n)) time, where n is the number of sides of P.

We first compute the subsequence of vertices of P which are visible from z.
We denote this subsequence by S, = Viyy Viyy ..., 0;,. For example, in Fig. 4,
8. = 0,1, 2 5 If for any j = L oo, m, vy, & vip1 (mod n), then the pair
Vijy Vijer 18 called a gap. V, is completed by filling in the gaps. A gap is filled by
constructing the half-lines xv;; and xv;,,. For each line, we find the closest
Interaction (to z) of the line with any of the sides v, .. ., V(-1 (1t may be that
no such intersection exists). Call these intersections Gi;y Gisy, (see Fig. 5).

We can merge S, and the gap fillers to finally compute V,. Any side in V,
connecting a vertex from P and a gap filler is called an occluded side. Occluded
sides are sides of V, which are not coincident with sides of P.

L e SX=O,I,2.5

! 2

F1c. 4. Visible vertices at z.
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Fr1i. 5. Computing gap fillers.

In what follows, we will consider the effects of introducing barriers and holes
into P.

A barrier in P is a straight-line segment wholly contained in P. Let x be a
point in P and let V. be the isovist at z. Let b be a barrier in P. Then there are
four relations that b might bear to V. :

(1) Both endpoints of b may be in V, (see Fig. 6a),
(2) One endpoint of b may be in V, (see Fig. 6b),
(3) b may pass through V, (see Fig. 6¢),

(4) b may be disjoint from V, (see Fig. 6d).

Let V', be the new isovist at z resulting from the introduction of b. Note that
if the left end of b (when viewed from z) is outside V., then odd-numbered inter-
sections of b with V. signal entrances of b into V. and even-numbered inter-
scctions signal exits. Vertices of V., between entrances and exits are excluded
from V’,. Vertices of V. between exits and entrances arc included in V', If the
left end of b is inside V., then odd-numbered intersections of b with V. signal
exits and even-numbered ones signal entrances.

A hole (or a solid obstruction) is a polygon P’ wholly contained in P. To compute
V', given the introduction of a hole in P we:

(1) cheek to see if x € P’. If so, we define V/; = ¢, since x is no longer in P.
(2) Otherwise treat each side of the hole as a barrier.

N
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Fia. 6. Types of barriers in P,



54 DAVIS AND BENEDIKT

Pl
/]
/ AN /
~ /
~——"
L] AN 7/
< v
X
(a) (b)
o ——
_—”/ x

(e)

Fia. 7. Introducing a hole in P.

Figure 7 shows the results of successively treating each side of a hole, P, as a
barrier to compute the isovist at point z in P after the introduction of P’. Note
that we considered the sides of P’ in inereasing order of their distance from z. In
this way, the last three sides of P’ resulted in no changes to V,.

An important extension of the notion of a hole is the notion of horizon. The
computation of V, assumes that the visibility from any point is potentially
infinite ; the presence of the border (of P) and barriers is what makes V, finite.
There is no prior bound on the radius of V..

The notion of a horizon is intended to model the limited view of a human
perceiver (the limitation derives more from psychological constraints than from
physical constraints). The horizon is, ideally, a circle of radius r centered at z.
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Fia. 8. T'wo simple shapes.

For ease of computation, we might model the horizon as a diamond or an octagon
of radius r centered at . We call this the horizon shape, H. (Note: Diamonds and
octagons are the most compact digital shapes; see Rosenfeld [17].) The horizon-
limited isovist at x, V.7, is the intersection of V, with the horizon shape centered
at z. V,” can be computed by a procedure identical to that for dealing with a
hole except for the execlusion of the test for membership of z in P’. We will not
specifically discuss the computation of isovist fields for horizon-limited isovists
in this paper.

3. ISOVIST FIELDS

In this section we will discuss the computation of isovist fields and display some
of these fields. We will discuss both the computational aspects of computing
the isovist fields, and the applications of the fields to robot planning, psycho-
logical modeling and architectural design (Section 3.4).

Fia. 9. Area fields.
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(a) (b)

Fia. 10, Pertmeter fields.

3.1. The Area Isovist Field— &
Suppose that the vertices of V. are {v; = (2, yi)}io. Then the arca of V,, A4, is

2

Ae =2 iy — yia1).
1=(}
Figure 8 shows two simple shapes. Figure 9 shows the isovist area ficld, @, for
the shapes in Fig. 8.

3.2. The Pertmeter Field—®
The length of the boundary of V,, the perimeter of V,, B, is

n

B: =2 d{vi, viy).
={
Figure 10 shows the perimeter ficlds for the shapes in IFig. 8.
It is obvious that if P is convex, then ® is constant. However, ® constant does

not imply P convex. Consider two tangent, closed cireular sets, for example.
For such a set, ® is constant,

Fra. 11, Compactness fields.



ISOVISTS a7

Frd. 12, Occlusivity fields.

An interesting field which can be derived easily from @ and & 1s the compactness
field, €, defined at point x as C, = B,?/A,. This, of course, is also constant for a
convex P (but again, constant € does not imply P convex). Figure 11 contains
the compactness fields for the forms in Fig. 8.

Another useful field related to the perimeter field is the occlusivity field. Recall
that in the computation of V, the occlusivity of V., O (with field 0), is the total
length of the occluded sides of V., (see Section 2). We can then also define the
visible perimeter field, V®, as ®-0. Figures 12 and 13 contain 0 and V@ for the
shapes in IFig. 8.

The area and visible perimeter fields could serve an important funetion in
robot plan formation. A reasonable constraint to place on a path which a robot
might traverse in surveying some environment is that if the robot moves along
the digital path {z1, 23, ..., z.}, then the isovists at consecutive points, V., and
V..., share a sufficiently high percentage of area. In this way, the robot could
use his perception of V.. to guide his perception of V., If V., M V., were
small, then no such expectations would be available for facilitating the processing
of V... A similar argument could be made concerning the visible perimeter
since most of what the robot must perceive is contained in the visible surfaces
surrounding him.

Fic. 13. Visible perimeter fields.
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Fic. 14. |4, — A..| small but ¥V, NV, small also.

A reasonable heuristic to bring to bear on choosing a path, then, is that the
maximal rate of change of area (or visible perimcter) along that path is
bounded, i.e.,

[A’Ii —- AT{+1i < b.

(Note that |4, — A,,,,| < b does not imply that V,, and V,,, share much
common area, since they might, e.g., be on opposite sides of a symmetric “pinched”
space, such as the one shown in Fig. 14. The safer strategy, then, is to compute
A (in M VIH-])')

Another possible point of view is that since computer vision is expensive even
when given a powerful set of expectations, we should compute a small, sufficient
set (cf. Section 4). Thus, we would minimize the number of times that the robot
would have to invoke his visual capabilities. Section 4 discusses the computation
of small, sufficient sets.

Note, also that the 0 field (and the V@ field) decompose the cross into simple
pieces corresponding to the “lobes’” of the cross and the center of the cross. This
suggests that fields such as © should be useful tools for shape decomposition. In
fact, necks in shapes are places where fields such as © and ® are changing rapidly.
The problem of shape decomposition based on isovist fields will be treated in a
subscquent paper. Note that the shape decomposition scheme proposed by

V2

V

1

Fig. 15, Computing moments.
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Fra. 16a. M, field, 9Ny, for Fig. 8a (perspective plot).

Haralick and Shapiro [18], which starts by computing all pairs of perimeter
points p and p’ such that p € V,. was implicitly using ideas related to isovists.

3.8. Radial Moment Fields

Since V, is star-shaped from «, an cquivalent way of representing V', is in polar
form d = (), where r(8) is the length of the line from z to the boundary of
V, in direction 4.

The pth moment of V, is then

1 27
My = [ (r(8) — 7(6))7d8,

1 2T
F(8) = -#/ v (8)d8.

m

where

In the special case where V, is a polygon, it ean be shown that
]"{1 - ay,
17112 = A9 — 17‘[12,
A{g = O3 — 3]"[1&2 + 21‘[ 13,
where
nooyy i}
ap, = 2 — a,(2)

i=1 2qr
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'«;\;

Fig. 16b. M, field, M, for Fig. 8b.

and

a:b; sin v, (ci +a; — beosvy:) (e, + b; — a; cos vy)
a,(7) = log

C; Yi

a:b; sin?y;

1 aibi . 2
ax(i) = ~~( sin 7,—) (cot a; + cot Bi),
YiN G

1 aibi 8
a3(7) = i~ ( sin 'y;) [cosec a; cot a; + cosee B; cot 8;
=Yi N €y

+ log {[(cosec a; + cot a) (cosec B; + cot 8] ]

(see Fig. 15 for the definitions of «y, 8:, vi, as, by, ¢).!

Figures 16-18 contain the moment fields (9174, 91, 9MC;) for the shapes in Fig. 8.
In the context of isovists, 9, represents the deviation from the mean of the
perimeter’s distance fo x, M, the variance, and 9 the skewness of the perimeter
distribution relative to x.

! We are grateful to Professor Frederic Ancel of the Mathematics Department, of the University
of Texas at Austin for providing the geometrical constructions and derivations which led to these
formulas.

P
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Fia. 17a. M, field, 9., for Fig. 8a.

3.4. Psychological Relevance of Isovist Fields and Some Possible Applications

In the previous subsections we have introduced a variety of isovist fields and
discussed their relevance to computer space perception. In this subsection, we
would like to clucidate some of the psychological and architectural significance
of these ficlds.

As a first example, a number of authors have recently come to view the problem
of privacy as one of regulation of personal information, that is, as the achieving
of “an optimum balance ... betwcen the ‘information’ which comes to a person
and that which he puts out” (Canter and Kenny [197; cf. also Altman [20]).
When we consider sources of (visual) information to be distributed in some
definite way in space, then cach isovist “‘covers’ a definite subsct of those sources.
The isovist size measures, such as arca and perimeter, approximate the (potential)
amount of information available at z as well as the (potential) “‘audience size”
or exposure of a person at x. Therefore one would expect that privacy-related
path and location choice (and the definition of “public” and “private spaces” in
general) will pay, at least unconsciously, much attention to the maxima, minima,
and gradients of ficlds such as the arca and perimeter fields.

There are situations and environments in which one typically wishes to see
much without being overly exposcd on all sides. Here area alone will not suffice
and it is better to consider, too, the skewness (91;) of the distribution r(8). It
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F1G. 17b. M, field, 9, for Fig. 8h.

measures the extent to which radials are concentrated in a certain angular region
and tends to be large close to surfaces and in corners (although high 917; does not
invariably entail this condition: further conditions are also relevant). In a given
environment, points in space characterized by high area and 917; thus tend to
fulfill our conditions for good view and low angular exposure. It is a matter for
further research whether such commonly observed behaviors as preferring a table
with a view in a corner or a table against a wall or pillar in a restaurant (or
institutional dayroom; Sommer [21]), or waiting in railway stations close to
pillars in areas of good visibility (Canter [19, p. 1337), are amenable to analysis
and prediction based on isovist field analysis.

Consider another related example. Newman [22, pp. 30-34], reporting on the
incidence of crime in and around urban residential buildings, pointed out the
significant relationship of visibility to erime incidence. The intending eriminal is
interested in three things with respect to spatial characteristics of the environ-
ment: (1) being inconspicuous, (2) being safe from sudden detection, and (3)
having an avenue for escape. The first two factors are describable in good part
as attributes of the isovist, area and occlusivity, respectively. The hypothesis
that erime such as vandalism, burglary, or assult will tend to occur in regions of
coincident local minima in area and occlusivity seems to be borne out in Newman’s
data. He reports a high incidence of crime in elevators, certain lobbies, and corridor
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Fia. 18a. M, field, M, for Fig. 8a.

types. But for less intuitively obvious eases, only more detatled data about the
spatial location of incidents of crime will serve to confirm or reject this hypothesis.
1f confirmed, computer generation of the area and ocelusivity fields of a proposed
building or group of buildings might well help to predict likely trouble spots and
be a guide in redesign. (We do not mean to imply, of course, that visibility
eriteria arce the sole or most salient determinants of crime in a “defensible space”
theory (cf. Mawby [237).) Optimal survcillance paths, of course, may correspond
to minimal sufficient paths as already defined.

Many writers have remarked qualitatively about the need or desirability for
spatial diversity in the environment (e.g., Rapaport and Hawkes [24]). From
open to closed areas, field to forest, peak to valley, plaza to vestibule, courtyard
to street, and so on, the opportunity exists to typify and quantify “types of
space” and the transitions between them in a new way since each has characteristic
isovists and isovist fields (see also Thiel [257). In urban and regional studies,
straightforward use of the isovist (or “viewshed”) can already be found (cf.
Lynch [26, pp. 98-100, 138-1427).

It is also conceivable that terms such as “hall,”’ “street,” “court,” “‘colon-
nade’” ... might in good part be definable in terms of the kinds of isovists and
isovist fields they generate. If this were possible partially or within limits, as
should often be true, a dircction seems clear: to design environments not by
initial specification of walls, surfaces, and openings, but by specification of the
desired (potential) experience-in-space, that is, by designing fields directly;
compare Thiel’s [25] “envirotecture” (sce also Sommer [27, p. 1327). Be that
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Fia. 18b. M, field, 91, for Fig, 8b.

as it may, it seems clear that feature measures describing the shape and size of
1sovists can create a group of sealar fields unique to a given environment. These
fields in turn characterize the environment and appear to be correlated with
certain human spatial perceptions and behaviors. An experimental program now
under way is an application and test of some of the hypotheses. The problem
chosen is that of the perception of “spaciousness”; of how large or small an
environment appears because of its shape and/or the observer’s position and
path of movement. Two series of experiments are entailed, preceded by an
analysis of the statistical behavior of isovist measures relative to each other, with
and without ‘“architectural constraint.” The first series employs models, the
second full-size experimental environments. In both, the perception of spacious-
ness is tested against systematic variation of isovist measures in architectural
environments of objectively equal size (arca/volume).

In the realm of computer vision, parallels to the above observations apply.
Work, to be reported in a subsequent paper, indicates that medial axis transforms
and shape decomposition ean be effected from isovist fields. Isovist fields, like
fingerprints, may also be useful in typifying dissimilar or identifying and distin-
guishing otherwise similar shapes. Analysis of depth information output from
range-finding devices may also be fruitful: we have already remarked about the
problems facing a (robot) guard. Indeed, research in strategic search and sur-
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veillance (e.g., Gallagher’s discussion of “intervisibility” [28]) could well benefit
from the computation of sufficient sets and paths from local information, and
an investigation of various “hide and seek’ algorithms.

4, SUFFICIENT SETS OF ISOVISTS

In this scction we will investigate the relationship betwecen sufficient sets (e,
sets of points whose isovists cover the original shape) and the skeleton of the
shape. As before, we are restrieting our attention to shapes with polygonal
borders.

It is interesting that we can distinguish between notions of area sufficiency and
perimeter sufficiency. We have, up to now, only considered arca sufficiency—i.e.,
a subset B of P is area sufficient, a-sufficient, if \Uyep Vi = P. If we let P denote
the perimeter of P, then we can say that a set B is perimeter sufficient, p-sufficient,
if \Uyep Vs = P. Clearly, B a-sufficient implies B p-sufficient. However, the
converse does not hold. Consider Fig. 19. The set B = {by, bs, b3} is p-sufficient,
but not a-sufficient.

In what follows, we will restrict our attention to e-sufficiency, so that “sufhi-
ciency” will mean a-sufficiency. 1t is, of course, obvious that the skeleton itselt
is a sufficient sct, since the largest disk D, centered at a point z in £ which 1s
wholly contained in P is clearly contained in the isovist at x, V,; ie., D, © V..
However, the skeleton has “too many” points to be of interest. We will show that
the set of skelelon branch points, i.e., the endpoints of skeleton branches, consti-
tutes a sufficient set.

Montanari [29] proves that there are only three types of branches in the

; .

Fic. 19. V,, WUV, Vs, = P. Areamarked with | is P — Vy; ——is P — Vy,;and \is P — V.
Note that all of the border of P is contained in some isovist, but the crosshatched area in the
center of P is not.
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3

Sp

Fic. 20. For a type 1 branch, D ., is convex,

skeleton of a polygon:

(1) A straight-line segment gencrated by wavefronts propagating from two
sides of the polygon. We will call such a branch a type I branch.

(2) A straight-line segment formed by the ecircular wavefronts propagating
from two coneave angles of the polygon. We will eall such a branch a type 2 branch.

(3) A parabolic are formed by a circular wavefront and a straight wavefront.
The concave angle causing the circular wavefront is the foeus of the parabola,
while the straight side causing the straight wavefront is the direetrix. We will
call such a branch a fype 3 branch,

LEMMA. Let x1x, be a branch of the skeleton of a polygon P. Let D,,,, = \UsCryzy Di.
Then if p is a point in D, ., then either xsp < D,,,, or xop © D,yry. Kouivalently,
of & ts a point on x1xs, then D, € (V,, U V).

Proof. By cases.

(1) Suppose 212, is a type 1 branch. Then D,,,, is shaped as shown in Fig. 20,
since the propagation veloeity along the branch is constant. Here, s; and s, arc
the sides of P giving risc to the branch zyr,. Sinee, in this case, 1), ., is convex,
it is star-shaped from both z; and ..

(2) Suppose z1z; is a type 2 branch. Then we can show that Doy = Dy v Dy,
To see this, consider Iig. 21. Consider D,, and a clockwise traversal of its border,
D.,. The borders of all the disks on xu, intersect at the same two points, p; and
p2. The intersection of D,, with D,, at p, marks the departurc of D,; from D,,,
since y € D, and the intersection of D,; with D,, at p, marks the entrance of
D.,into D,,. Therefore, the only part of ., not contained in D, is the arc between
p2 and pi. But, by similar reasoning, the interscetion of D,, with D,, at p; is the
departure of D, from D,, (since y & D.,) and the interscetion of pz1s the entrance.
But then D,, € D,, v D,,, and since Dy is convex, D,, € D,, v D,,. So

V Do=DyuD,v[ U D,]=D, v D, S.t. g £ w0y, w5 £ 2.
xe.):l:uz T3
(3) Suppose xxs is a type 3 branch. Then we can show (sce Fig. 22) that
D;p, = D,y v D,y v X, and that all points in D, ,, are visible from either X1 OT Ts.

First, it is clear that the line segment from (a, 0) to (¢, 0) forms part of Dy pes.
Now, for any x3 on z12., D., intersects both D, and D,, at the focus. Furthermore,
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Fia. 21. For a type 2 branch, D, & D; UD,,, 23 € 2122,

D,, interseets D, at a point to the right of (a, 0) and intersects D,, at a point to
the left of (¢, 0). The only points in D,, that are not in D, v D,, arc those in
D., M X. We will show that all points in D,, /M X are visible from x, (they are also
visible from z.). Suppose not. Then there is a p & D,; /M X such that x;p Z P.
Let p’ be the first point on the vector x1p such that p” & P (one must exist since
otherwise x;p € P). Since D,, C P, it must be that p’ € X. Let p’ have co-
ordinates (g, #). Then clearly a < g < ¢. Let 2y = (7, 1) be the intersection of
the line y = h with the parabola. Then p’ € D,, © P. But then p’ & P, contra-
dicting the assumption that p’ € P. Therefore, every point p in X is visible
from . Since D, €V, and D, S V,, and we have shown X C V.,
Diey & Vi vV Vi //
Using this lemma, we can prove the following theorem.

THEOREM. Let B = {by, ..., b,} be the branch points of the skeleton of P. Then
P =\Uics Vs

Proof. Clearly \U,ep V, € P. Let p & P. Then for some  on the skelcton of
P, p € D, Let xux: be the branch containing x. Then, since by the
lemma, D, C V,, v V,, it must be that + € V,, v V., © Usep V. But then
P S \User Vi //

Now, the set B is obviously not minimal; for a rectangle, c.g., B contains two
points, whercas only one point is required for the minimal set of any convex
shape. In fact, although the skeleton branch points constitute a convenient (to
compute) central set of points from which to construet a small sufficient set
(see below), it is unfortunately not the case that the smallest subset of the set
of branch points that is sufficient is also minimal.
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o= i { - -
a f e c directrix
X

Fic. 22. D, ., for a type 3 branch.

Fact. The skeleton of a star-shaped polygon docs not necessarily pass through
the kernel.

Consider Fig. 23. The kernel is the crosshatched region X. The skeleton of this
figure will not pass through area X. Therefore, the smallest sufficient subsct of
the skeleton branch points will have size at least 2. Of course, discovering that a
figure 1s star-shaped is computationally simple (see Shamos [167]); however, one
can imagine a regular duplication of such figures. Here, the size of a minimal
sufficient set is a number unobtainable using the skeleton-based approach.

We can, however, establish an easily obtained lower bound. Let F be a minimal
sufficient set for P and let | F| denote the size of F.

ProposiTiON 1. Let P be a polygon with vertices ® = {py, ..., p.} and isovists at
those vertices Vy,, ..., Vp.. Let ® be the largest subset of ® with the property that if
Pi, i EC®, 1 Fj then V,, N\ Vy, = ¢. Then |F| > |[¢'].
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)

X

Fia. 23. Skeleton does not pass through kernel.

Proof. Suppose |F| < {@']. Let X = {zy, ..., zj¢/1-1} be a sufficient set.
Then since | X| < |@'], there must be an z; & X such that for some pair p;,
pr € @, z; must see both p; and p,. But then V,, MV, # ¢ since x; 1s in the
interseetion. Thus |F| > |¢']. //

We could, of course, have chosen any set of points, but the vertices represent
a convenient sct. Unfortunately, it is not the case that |F| = |@'|. For Fig. 24
below, |®’| = 2, but |F| = 3. However, | P| is an upper bound on |F].

ProrositioNn 2. Let P be a (possibly nonsimple) polygon with wveriices
® = {py, ..., pn}. Then P = U, cp V,,. Therefore |[F| < |P].

Proof. Any polygon P can be decomposed into its primary convex subsects
Py, Py, ..., P, (see Pavlidis [87), each of which contains at least one vertex of
the polygon. Let z € P. Then, for some P;, x & P;. Let p; be a vertex of P in
P; Then 2 € V,.. Thus P € Up.ep Vy,. Since obviously P 2 \Uy.ee Vi, the
proposition is true. //

Fic. 24, |P'| = 2 but |F| = 3.
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This proposition shows that the vertices of a polygon form a sufficient set.

In fact, the number of primary convex subsets is equal to the number of concave
angles (for P simple), so that [F| < (', + 1 where (7 is the number of concave
angles (sce Pavlidis [307]).

Suppose we are given the set of skeleton branch points, B = {by, ..., 0.}
and their isovists Vg = {V,, ..., V,,}. We might attempt to construct a
smallest subsct, Vo, of Vysuch that \Jy,cp Vi, = P. However, this is an instance
of the sct—cover problem, which is known to be in the class of .VP-complete
problems (see, e.g., [31]).

Instead, we will deseribe a suboptimal algorithm to find a subset of B which is
sufficient. The algorithm is based on representing the isovists by (k X k)-long
bit vectors. Here, & is chosen to allow for an acceptable scaling of the shape,
while keeping the storage costs of the algorithm at a reasonable level. The bit
vector is computed by “painting” the interior of an isovist on the array, and
then storing the painted array in the bit vector in row major order.

So, let b,,, ..., b., be the bit vector representations of Vu,, ..., Vs, and let b,
be the bit vector representation of the original shape. The algorithm will construct
aset B’ = |by, by, ..., b;,} such that \U, ep Vs, = P.

nl

Tn

0) B =¢,j =0;

(1) Let b, be the element of B with largest area (resolve ties arbitrarily). Set
J=1and b, = b,

(2) bp = bp — bi. This set difference can be efficiently computed using a
computer’s basic logical operations. by contains the points of P unaccounted
for by B’.

(3) If bp = 0, exit with B’

(4) Otherwise, for each b, © B — B’, compute bp M b;. Let b, be the bit vector
such that bp /M by has the maximal number of points.

(5) Set 7 =)+ 1, and b;; = b

(6) Go to 2.

The algorithm can exccute step 4 a maximunm of »n times, since if B’ = B,
then bp would have been set to 0. Each application of step 4 will require on the
order of n bit vector “ands.” Thus, the algorithm requires on the order of n?
“and” operations and nk? storage.

The advantages of using a bit veetor representation for the v, rather than a
list-structure of vertices are:

(1) The polygon intersections can be computed quickly using the computer’s
logical operations, and

(2) The intersection of two polygons may have many components. Since the
descriptions of the individual components are not needed by the algorithm, the
bit vector representation is computationally much more convenient.

The disadvantages, of course, are the storage of the bit vectors and the need
to possibly scale the shapes to keep the necessary storage within limits. We should
point out that therc are many speeclal-purpose machines (e.g., CLIP [32],



ISOVISTS 71

PICAP [33]) which could easily support the algorithm using this ‘“iconic”
representation.

5. SUMMARY

The notion of an isovist was introduced and defined as the set of all points
in a polygonal region P visible from a point z in P. This led to consideration of
the number of isovists required to “see’” the whole region and the definition of
sufficient and minimal sets and paths. Isovist fields were defined as the fields of
(position-dependent) values of some measure of the shape or size (or other
feature) of isovists distributed throughout P.

These basic ideas defined, a technique for computing isovists at given (or all)
points in given /”’s with arbitrary barriers and holes was presented. The compu-
tation of various scalar fields was outlined and illustrated ; these were: the area,
@, perimeter, ®, visible perimeter, V®@, occlusivity, 0, and compactness, €, fields,
as well as two radial moment fields, variance, 9,, and skewness, N,

Having outlined the nature of isovists and isovist fields, their relevance to the
design of buildings was briefly discussed and parallels in computer vision and
pattern recognition suggested.

We concluded with a more thorough examination of the problem of computing
minimal sets. It was proved that the branch points of the skeleton of a polygon
constitute a sufficient, though not necessarily a minimal, set. Propositions as to
the upper and lower bounds on the size of a minimal set were proved and a (sub-
optimal) algorithm presented that approaches minimality closely.
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