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A GENERAL THEORY OF VALUE
Appendix  Four: The Rules of LIFE

© Michael Benedikt, 2000

In LIFE, the number of neighboring cells that each cell must take into account before

deciding its own next state is 8.  (Each cell also takes its own (previous) state into account, but
somewhat differently, as we shall see.)  With N = 8 and each cell capable of being in one of two
states, Cpot of the neighboorhood = log2(2N) = 8 bits.1  Somehow, eight bits of information have to
be boiled down into one bit, because one bit of information is the most that a cell is permitted to
display, both to us, as observers, and to its neighbors.2

To find R1, we must compute the actual complexity-of-behavior that the rules will permit.
We notice that rule(1), "if exactly two neighboring cells are on, stay in the present state
(whatever that is, 'on' or 'off')," does not care which two neighboring cells are on.  Nor does
rule(2) care which three.  And rule(3) just lumps all remaining conditions together.  Here we see
LIFE whittling and distilling eight bits of potential complexity down to....  Well, let us see.

All of LIFE's rules entail summing the number of "on" cells without regard to order or
position around the central cell.  This summing procedure is in and of itself is very organizing.
Figure A4.1 plots the number of ways, W(k), that 8 independent cells can be "on" or "off" and
add up to k (where each "on" cell counts as 1 and each "off" cell as 0).  Notice that the
distribution is far from uniform, which would be the case if every possible way of arriving at 0 )
k ) 8 was equally frequent or likely.  This distribution would have no structure, no organization.
The distribution we have with our summing procedure is, rather, a 'normal' or Gaussian one, with
k = 4 as the most frequently produced sum.3  Far from maximally complex, this distribution has
structure (organization, in fact, to the tune of 1.9 bits).
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Figure A4.1  Frequency distribution of the number of ways, W(k), that 8 binary
digits (= 1 or 0) can sum to k  = 0, 1, 2,...8 when p("1") = p("0") = 0.5

Figure A4.1 depicts a situation in which all neighborhood cells are as likely to be found
"on" as "off."  But in LIFE, this is not the situation.  In LIFE, the probability of a cell in an active
pattern being "on" is around 0.2 and of being "off" 0.8, and this fact skews the symmetrical
distribution of A4.1 considerably to the left.  What we get with LIFE, rather, is shown in Figure
A4.2.4

Figure A4.2  Frequency distribution of the number of ways, W(k), that 8 binary
digits (= 1 or 0) can sum to k  = 0, 1, 2,...8 when p("1") = 0.2 and p("0") = 0.8

The potential complexity, Cpot, of LIFE's skewed distribution shown in Figure A4.2 is
log(9) = 3.17 bits.  (Why log(9) and not log(8)?  Because k, since it includes zero, can have nine
different values: 0, 1, 2....8.   For the unskewed distribution shown in Figure A4.1, note that  Cpot

is also 3.17 bits).
Now applying Equation 1.4, we find that the actual complexity, Cact, of the LIFE

distribution (think of it as a very biased 9-sided die) is 2.16 bits.  This gives a magnitude for R1

of 2.36 bits, and 1 = 2.24 bits.  Notice that the closeness of Cact  to R1 keeps LIFE very much near
the ridge of 1, just as out theory predicts it should.

What remains to show is how LIFE's rules keep p(on) around 0.2 and p(off) around 0.8
round after round of updates, "generation" after "generation."

The probability of exactly two neighborhood cells being "on" is 0.29.  This is also the
probability of rule(1) being applied.  The probability of exactly three neighborhood cells being
"on" is 0.15.  This is also the probability of rule(2) being applied.  All other neighborhood cell

 

20

40

60

80

F

2 4 6

k

1 5 70

W(   )k

83



Benedikt, Appendix 4     Page 3

state permutations together have a probability of occurring of 0.56.  This is the probability of
rule(3) being applied.  (For a listing of the rules, see Chapter Two, page...)

We now look at the transition probabilites p(onAon), p(offAon), p(onAoff) and
p(offAoff).  Applying 2-3 LIFE rules give us the following magnitudes

p(onAon)= 0.2(0.29) + 0.2(0.15)
p(offAon)= 0.8(0.15)

p(onAoff) = 0.2(0.56)
p(offAoff) = 0.8(0.29) + 0.8(0.56)

which means at every time step that

p(on) = p(onAon) + p(offAon)
          =  0.2(0.29) + 0.2(0.15) +  0.8(0.15)
          =  0.21

 p(off) = p(onAoff) + p(offAoff)
           = 0.2(0.56) + 0.8(0.29) + 0.8(0.56)
           = .79

Near enough, no?
A question for mathematicians: are there an arbitary number of CA rule-sets, R, that have

the property of preserving arbitrarily chosen but fixed ratios of p(on):p(off) in a finite CA region
while actual configurations of "on" and "off" cells change with every time step?  I suspect not.

In so-called "3-4 LIFE",5 which is a little less productive of self-animating patterns than the

original "2-3" version, the glider is as shown in Figure 2.14.  It uses 8 or 9 "on" cells in a 6x6

grid rather than 5 "on" cells in a 5x5 grid, but the parameter settings in R2 are adjusted to match.

rule(1) rule(3)

rule(3)

rule(2)

rule(1) rule(2)
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NOTES to Appendix Four: "The Rules of LIFE"

1  If every cell in LIFE treated its "earlier self" exactly like a neighbor, then Cpot would be equal to 9 bits.

_____________________________________________
2  In CAs in general, an individual cell can be in one of S states, where S * 2.  So can its N neighbors, N >

1.  This means that the neighborhood of a single cell can be one of SN different states.

Now SN is a number which is always larger—and generally much larger—than S.  This means that there can

be no one-to-one mapping between neighborhood-states and cell-states, since in total number the latter always

exceeds the former.  What every CA's rule system must do then, in and for every cell, is reduce SN down to S.  This

requires decision-making, "information processing," organization.  Each cell must in some systematic manner distill

the huge variety of neighboring-cell-state permutations down to the small number of states it can actually act out and

display to other cells.  And this must be true for all cells.  Not only can no cell know what the others are "thinking,"

then, but no cell can be uniquely responsive to every combination of what its neighbors are "saying" (which is, as

we have just seen, far less complex than what they are thinking).  Indeed, no cell can exceed in sensitivity or

expressiveness the sensitivity or expressiveness allowed to its neighbors without causing an escalating arms race that

no cell can win, the avoidance of which is less a moral choice by CA designers than a mathematical necessity of

CAs with one level of hierarchy.

I would argue that this necessity applies, within slightly broader limits, to all models of egalitarian/anarchic

societies with the ideal of totally "(from-the-)bottom-up" self-organization by equally endowed citizens.  As with

cells n a CA, the complexity of behavior of individual members of a perfectly egalitarian society cannot come near

the complexity of the behavior of an ensemble of similarly endowed and expressive neighbors.  S << SN.  Every

individual must collapse, ignore, or sift away at least (logS)(N – 1) bits of information coming from her or his social

environment.  Under these cicumstances, everyone is smarter "inside" than they look "outside" by necessity, and all

complexity-of-expression greater than that which can be processed by neighbors-looking-at-their-neighbors-too is a

waste.

 A waste, that is, unless (1) there are some cells that have greater capacity for percieving and expressing

complexity, and (2) these cells can communicate with each other on another level.  For example, imagine starting

with a CA like LIFE in which every cell can be in one of two states, black or white.  Now let us endow some

cells—say, every tenth in the grid in both directions—with the ability to display 28 = 256 colors, which color being

dependent on the permutations of state of their 8 always-black-or-white neighbors.  (For their part, the color cell's

black-or-white neighbors "see" half of the color cell's 256 colors as black, and half as white.  They are, as it were,

not only colorless but color-blind.)  These new, color-expressing cells can be made to see and read each other and

thus—using very much the same LIFE rules as the black-or-white cells use among themselves, and as they themselves

use with their black-or-white neighbors—create a more complex-and-organized game of LIFE...create, in short, a

class of cognoscenti, an elite.  Goodbye egalitarianism.

Now let every twentieth cell be capable of displaying 1024 colors....

Insofar as CAs can model real life, real societies are clearly made up of "cells" that vary widely in their
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capacities for processing each other's information output.  It is said that Bill Clinton knows 10,000 people by name;

I know perhaps 100.  Do simple folk, in this sense, stick with simple folk, and complex with complex?

_____________________________________________
3  The driving equation here is "8-choose-k" or W(k) = 8!/[(8 – k)!k!], where "!" means "factorial," and k

factorial means (k – 0)(k – 1)(k – 2)....(k – [k -1]).  For example, 4! = 4x3x2x1 = 24.

___________________________________
4  The driving equation here is W(k) = (8!/[(8 – k)!k!])(0.2k)(0.88–k)(28).  Thanks to Dr. Charles Friedman,

Professor of Mathematics at the University of Texas at Austin, for deriving this formula.

________________________________________________
5 In 3-4 LIFE, the parameters are set so that rule(1) calls for 3 cells "on," rule(2) calls for 4 cells "on," and

rule(3) remains the same.

_____________________________________________


